O PyTorch

Sentiment Analysis on Movie Reviews : A

predictive model with pre-trained Bert by PyTorch

Huaye Zhant

L Artificial Intelligence - Software engineer technology, Centennial College

content

O U1 A W N =

. Introduction

. Dataset

EDA

. Training

Model Deployment

. Conclusion

Introduction: Workflow

L
‘ -

Rotte
T‘I‘I‘cl’at??es

‘éjGamg'e
=)

() PyTorch Streamlit

Dataset: Kaggle API

® KAGGLE - PLAYGROUND PREDICTION COMPETITION - 10 YEARS AGO

Sentiment Analysis on Movie Reviews

Classify the sentiment of sentences from the Rotten Tomatoes dataset

Overvie Data Code Models Discussion Leaderboard Rules Team Submissions

Overview
Start Close
Feb 28, 2014 Feb 28, 2015
Description

"There's a thin line between likably old-fashioned and fuddy-duddy, and The Count of Monte Cristo ... never quite settles
on either side.”

The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment analysis, originally collected
by Pang and Lee [1]. In their work on sentiment treebanks, Socher et al. [2] used Amazon's Mechanical Turk to create
fine-grained labels for all parsed phrases in the corpus. This competition presents a chance to benchmark your
sentiment-analysis ideas on the Rotten Tomatoes dataset. You are asked to label phrases on a scale of five values:
negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm,

Competition Host
Kaggle

Prizes & Awards

Knowledge
Does not award Points or Medals

Participation
1,510 Entrants
1,011 Participants
860 Teams

6,813 Submissions
Tags

Text Multiclass Classification

Categorization Accuracy

Z Home & nn_project_pytorch X

[l @ localhost:8888/notebooks/Downloads/nn_project/nn_project_pytorch.ipynb

-': Ju pytel‘ nn_project_pytorch Last Checkpoint: 9 days ago

File

Edit

View Run Kernel Settings Help

B + XTOTCF » 8 ¢ » Cde

[1]:

gathering data from kaggle

from kaggle.api.kaggle api_extended import KaggleApi
import zipfile
import os

apl = KaggleApi()
api.authenticate()

for file in ['train.tsv', 'test.tsv']:
api.competition download file('sentiment-analysis-on-movie-reviews'

with zipfile.ZipFile(f'{file}.zip', 'r') as zip ref:
zip ref.extractall('./")
os.remove(f'{file}.zip"')
Downloading train.tsv.zip to .

106+ | I | 1. 28M/1.28M [00:08<00:00,

Downloading test.tsv.zip to

100" | N | <5/ 454k [00:02<00:00,

, f'{file}.zip', path="./")

154kB/s]

187kB/s]

Phraseld

Sentenceld

1

1

1

1

Phrase Sentiment

A series of escapades demonstrating the adage ... 1
A series of escapades demonstrating the adage ... 2
A series 2

A 2

series 2

count

80000

70000

60000

50000

40000

30000

20000

10000

- negative

- somewhat negative
- neutral

- somewhat positive

- positive

4.5%

Count Plot of Review Score

17.5%

51.0%

2
Sentiment score

21.1%

5.9%

Count

20000

17500

15000

12500

10000

7500

5000

2500

=
=]
=]

Token count

3000

2500

2000

1500

1000

o

Somewhat Negative Reviews

o 10 20 30

Histogram number of words in reviews

o W

17500

15000

12500

10000

7500

5000

2500

o

3500

3000

2500

2000

1500

1000

o

Somewhat Positive Reviews

1000

401

a

M
=
S

o
50

i}
] 10 20 30 40 5

Training: Transfer learning and Fine tuning

o®
—> s 4% —> p 00
o
Transfer _ _

Learning Fine-Tuning Output

Normally, only

new layers need
to be trained
4)

Could even just
be a linear
regression

Pretrained Body —— [New Layers]

\ J
|

In this project, | fine-tune the entire model, including the BERT layers

Training: pytorchinfo

Transfer
Learning

Layer (type:depth-idx) Param #

Fine-Tuning Output

SentimentClassifier -
[-BertModel: 1-1 --

| LBertEmbeddings: 2-1 --
| LEmbedding: 3-1 22,268,928
| LEmbedding: 3-2 393,216
I '—Embedding: 3-3 1,536 &- BERT community
| LLayerNorm: 3-4 1,536 A <o
| LDropout: 3-5 --
L—BertEnCDder: 2_2 _ ~ Al &ML interests # Models 15 11 Sort: Recently updated
I |_Mc d u l.e Ll st : 3 - 6 85 Nl e 54] 464 :Izi;;;g;;‘;Zt::lr:i:‘::':i;,‘e::;:t::z:i:ifj:E;;:g;:t L google-bert/bert-large-cased-whole-word-masking L google-bert/bert-large-uncased-whole-word-masking-£..
LBertPooler: 2-3 - checkpoints.
I L—Linear: 3-7 598,592 . X & google-bert/bert-large-uncased-whole-word-masking & google-bert/bert-large-uncased

| | LTanh: 3-8 -- P ' :

|—D ropo ut: 1-2 -- ee‘ L google-bert/bert-large-cased-whole-word-masking-fin. £ google-bert/bert-large-cased

FHLinear: 1-3 3,845

Total params: 108,314,117
Trainable params: 108,314,117
Non-trainable params: ©

L google-bert/bert-base-uncased

i google-bert/bert-base-multilingual-cased

L google-bert/bert-base-multilingual-uncased

i google-bert/bert-base-german-dbmdz-uncased

~ Expand 15 models

Training: Result

®

Sy TR
SO 2
S

Transfer _ _
Learning Fine-Tuning
Training hist
10 raining history
—— train accuracy
— validation accuracy
0.8
S
—
O 0.6
O
=3
v
< 0.4
0.2
0.0

0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00
Epoch

Epoch 1/3

Output

Train loss 0.8075

Val loss

Epoch 2/3

0.7417

Train loss ©.6434

Val loss

Epoch 3/3

0.7612

Train loss ©.5542

Val loss

0.8015

accuracy 0.6642

accuracy 0.6956

accuracy 0.7367

accuracy 0.6895

accuracy 0.7779

accuracy 0.6913

Training: Result

,, ®
e . 00
) 5 40) ...

Transfer A
: ine-1unin
Learning g Output
0 - 3000
Class Precision Recall F1-Score Support Accuracy
- 2500
o1 0 0.57 0.39 047 365
C
g 2000 1 0.57 0.64 0.60 1310
=
c 2 EEERN 3228 e
3 1500 2 0.80 0.80 0.80 4027
g 3 0.62 0.65 0.64 1628
- 1000
é i 420 e 4 0.66 0.49 0.56 473
500 0.70
4
0

Q N 1 > B
Predicted sentiment

Streamllt

Model Deployment: Live Demo

O gOER QP e

Same

Sentiment Analysis App

Analyze Sentiments of Text

to analyze sentiment:

Conclusion: limitation and Improvement

Epoch 1/18

« Data binning and Data processing: bin O into 1, bin 3 into 4,
Train loss ©.8136 accuracy ©.6617

to make the data less imbalanced in preprocessing data.

val loss 0.7496 accuracy ©.6935

 Model comparison: compared with other pre-training models Epoch 2/10
« Train more epochs to observe the result Train loss 0.6601 accuracy ©.7296
val loss 0.7827 accuracy 8.6908
Epoch 3/18
Count Plot of Review Score Train loss ©.57089 accuracy ©.7709
80000 21.0%
Val loss ©.8427 accuracy B©.6822
70000 Epoch 4/10
60000
Train loss 0.4885 accuracy B.8084
50000
§ Val loss ©.9527 accuracy 0.6742
8 40000
21.1% Epoch 5/18
30000 | 175% | [BN e
20000 Train loss 0.4144 accuracy ©.8420
10000 4.5% 3.2% val loss 1.0937 accuracy 0.6606
Epoch 6/18
1 2 3 S

Sentiment score

Thank you!

