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Introduction: Workflow
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Dataset: Kaggle API

® KAGGLE - PLAYGROUND PREDICTION COMPETITION - 10 YEARS AGO

Sentiment Analysis on Movie Reviews

Classify the sentiment of sentences from the Rotten Tomatoes dataset

Overvie Data Code Models Discussion Leaderboard Rules Team  Submissions

Overview
Start Close
Feb 28, 2014 Feb 28, 2015
Description

"There's a thin line between likably old-fashioned and fuddy-duddy, and The Count of Monte Cristo ... never quite settles
on either side.”

The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment analysis, originally collected
by Pang and Lee [1]. In their work on sentiment treebanks, Socher et al. [2] used Amazon's Mechanical Turk to create
fine-grained labels for all parsed phrases in the corpus. This competition presents a chance to benchmark your
sentiment-analysis ideas on the Rotten Tomatoes dataset. You are asked to label phrases on a scale of five values:
negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm,

Competition Host
Kaggle

Prizes & Awards

Knowledge
Does not award Points or Medals

Participation
1,510 Entrants
1,011 Participants
860 Teams

6,813 Submissions
Tags

Text Multiclass Classification

Categorization Accuracy
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[1]:

## gathering data from kaggle

from kaggle.api.kaggle api_extended import KaggleApi
import zipfile
import os

apl = KaggleApi()
api.authenticate()

for file in ['train.tsv', 'test.tsv']:
api.competition download file('sentiment-analysis-on-movie-reviews'

with zipfile.ZipFile(f'{file}.zip', 'r') as zip ref:
zip ref.extractall('./")
os.remove(f'{file}.zip"')
Downloading train.tsv.zip to .

106+ | I | 1. 28M/1.28M [00:08<00:00,

Downloading test.tsv.zip to

100" | N | <5/ 454k [00:02<00:00,

, f'{file}.zip', path="./")

154kB/s]

187kB/s]
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Phrase Sentiment

A series of escapades demonstrating the adage ... 1
A series of escapades demonstrating the adage ... 2
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Training: Transfer learning and Fine tuning

o®
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Transfer _ _

Learning Fine-Tuning Output

Normally, only

new layers need
to be trained
4 )

Could even just
be a linear
regression

Pretrained Body —— [ New Layers ]

\ J
|

In this project, | fine-tune the entire model, including the BERT layers




Training: pytorchinfo

Transfer
Learning

Layer (type:depth-idx) Param #

Fine-Tuning Output

SentimentClassifier -
[-BertModel: 1-1 --

| LBertEmbeddings: 2-1 --
| LEmbedding: 3-1 22,268,928
| LEmbedding: 3-2 393,216
I '—Embedding: 3-3 1,536 &- BERT community
| LLayerNorm: 3-4 1,536 A <o
| LDropout: 3-5 --
L—BertEnCDder: 2_2 _ ~ Al &ML interests # Models 15 11 Sort: Recently updated
I |_Mc d u l.e Ll st : 3 - 6 85 Nl e 54 ] 464 :Izi;;;g;;‘;Zt::lr:i:‘::':i;,‘e::;:t::z:i:ifj:E;;:g;:t L google-bert/bert-large-cased-whole-word-masking L google-bert/bert-large-uncased-whole-word-masking-£..
LBertPooler: 2-3 - checkpoints.
I L—Linear: 3-7 598,592 . X & google-bert/bert-large-uncased-whole-word-masking & google-bert/bert-large-uncased

| | LTanh: 3-8 -- P ' :

|—D ropo ut: 1-2 -- ee‘ L google-bert/bert-large-cased-whole-word-masking-fin. £ google-bert/bert-large-cased

FHLinear: 1-3 3,845

Total params: 108,314,117
Trainable params: 108,314,117
Non-trainable params: ©

L google-bert/bert-base-uncased

i google-bert/bert-base-multilingual-cased

L google-bert/bert-base-multilingual-uncased

i google-bert/bert-base-german-dbmdz-uncased

~ Expand 15 models



Training: Result
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Epoch 1/3

Output

Train loss 0.8075

Val loss

Epoch 2/3

0.7417

Train loss ©.6434

Val loss

Epoch 3/3

0.7612

Train loss ©.5542

Val loss

0.8015

accuracy 0.6642

accuracy 0.6956

accuracy 0.7367

accuracy 0.6895

accuracy 0.7779

accuracy 0.6913



Training: Result
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Model Deployment: Live Demo
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Sentiment Analysis App

Analyze Sentiments of Text

to analyze sentiment:



Conclusion: limitation and Improvement

Epoch 1/18

« Data binning and Data processing: bin O into 1, bin 3 into 4,
Train loss ©.8136 accuracy ©.6617

to make the data less imbalanced in preprocessing data.

val loss 0.7496 accuracy ©.6935

 Model comparison: compared with other pre-training models Epoch 2/10
« Train more epochs to observe the result Train loss 0.6601 accuracy ©.7296
val loss 0.7827 accuracy 8.6908
Epoch 3/18
Count Plot of Review Score Train loss ©.57089 accuracy ©.7709
80000 21.0%
Val loss ©.8427 accuracy B©.6822
70000 Epoch 4/10
60000
Train loss 0.4885 accuracy B.8084
50000
§ Val loss ©.9527 accuracy 0.6742
8 40000
21.1% Epoch 5/18
30000 | 175% | [ BN e
20000 Train loss 0.4144 accuracy ©.8420
10000 4.5% 3.2% val loss 1.0937 accuracy 0.6606
Epoch 6/18
1 2 3 S

Sentiment score



Thank you!



