Gen AI:RAG Q&A Conversation With PDF Including Chat History

   
       
   
Let's try to upload BERT thesis to analysis.
   
       
   
Filling the Groq api key and uploading the BERT thesis.
   
       
   
Let's try to answer the assignment questions!
   
       
   
The answer of the question 1.
   
       
   
The answer of the question 2.
   
       
   
The answer of the question 3.
   
       
   
The answer of the question 4.

Code:

## RAG Q&A Conversation With PDF Including Chat History
import streamlit as st
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_chroma import Chroma
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_groq import ChatGroq
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
import os

from dotenv import load_dotenv
load_dotenv()

os.environ['HF_TOKEN']=os.getenv("HF_TOKEN")
embeddings=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")


## set up Streamlit 
st.title("Conversational RAG With PDF uplaods and chat history")
st.write("Upload Pdf's and chat with their content")

## Input the Groq API Key
api_key=st.text_input("Enter your Groq API key:",type="password")

## Check if groq api key is provided
if api_key:
    llm=ChatGroq(groq_api_key=api_key,model_name="Gemma2-9b-It")

    ## chat interface

    session_id=st.text_input("Session ID",value="default_session")
    ## statefully manage chat history

    if 'store' not in st.session_state:
        st.session_state.store={}

    uploaded_files=st.file_uploader("Choose A PDf file",type="pdf",accept_multiple_files=True)
    ## Process uploaded  PDF's
    if uploaded_files:
        documents=[]
        for uploaded_file in uploaded_files:
            temppdf=f"./temp.pdf"
            with open(temppdf,"wb") as file:
                file.write(uploaded_file.getvalue())
                file_name=uploaded_file.name

            loader=PyPDFLoader(temppdf)
            docs=loader.load()
            documents.extend(docs)

    # Split and create embeddings for the documents
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
        splits = text_splitter.split_documents(documents)
        vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
        retriever = vectorstore.as_retriever()    

        contextualize_q_system_prompt=(
            "Given a chat history and the latest user question"
            "which might reference context in the chat history, "
            "formulate a standalone question which can be understood "
            "without the chat history. Do NOT answer the question, "
            "just reformulate it if needed and otherwise return it as is."
        )
        contextualize_q_prompt = ChatPromptTemplate.from_messages(
                [
                    ("system", contextualize_q_system_prompt),
                    MessagesPlaceholder("chat_history"),
                    ("human", "{input}"),
                ]
            )
        
        history_aware_retriever=create_history_aware_retriever(llm,retriever,contextualize_q_prompt)

        ## Answer question

        # Answer question
        system_prompt = (
                "You are an assistant for question-answering tasks. "
                "Use the following pieces of retrieved context to answer "
                "the question. If you don't know the answer, say that you "
                "don't know. Use three sentences maximum and keep the "
                "answer concise."
                "\n\n"
                "{context}"
            )
        qa_prompt = ChatPromptTemplate.from_messages(
                [
                    ("system", system_prompt),
                    MessagesPlaceholder("chat_history"),
                    ("human", "{input}"),
                ]
            )
        
        question_answer_chain=create_stuff_documents_chain(llm,qa_prompt)
        rag_chain=create_retrieval_chain(history_aware_retriever,question_answer_chain)

        def get_session_history(session:str)->BaseChatMessageHistory:
            if session_id not in st.session_state.store:
                st.session_state.store[session_id]=ChatMessageHistory()
            return st.session_state.store[session_id]
        
        conversational_rag_chain=RunnableWithMessageHistory(
            rag_chain,get_session_history,
            input_messages_key="input",
            history_messages_key="chat_history",
            output_messages_key="answer"
        )

        user_input = st.text_input("Your question:")
        if user_input:
            session_history=get_session_history(session_id)
            response = conversational_rag_chain.invoke(
                {"input": user_input},
                config={
                    "configurable": {"session_id":session_id}
                },  # constructs a key "abc123" in `store`.
            )
            st.write(st.session_state.store)
            st.write("Assistant:", response['answer'])
            st.write("Chat History:", session_history.messages)
else:
    st.warning("Please enter the GRoq API Key")













Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Gen AI:Chatbot for SQL
  • Gen AI:Chatbot with langchain, Vector database and openAI
  • Gen AI:Use local ollama
  • Gen AI:Summary my portfolio by OpenAI
  • AI ethics